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Abstract:  The accuracy of the finite—difference time—
domain (FDTD) method in microwave circuit simulation
depends significantly on the accuracy with which the com-
putational grid resolves the structure’s geometry, especially
when it has curved boundaries (e.g., dielectric resonator fil-
ters). Body—conformal grids allow for accurate resolution
of the object, but complicate the implementation of absorb-
ing boundary conditions (ABC). In order to address this
conflict, we propose a new FDTD implementation in which
triangular grids are used near the scatterer boundary, while
rectangular grids are employed away from the scatterer to
facilitate simple ABC. The improvement in accuracy by the
new method is illustrated by its application to the scattering
from a circular dielectric cylinder.

1. Introduction

The FDTD method involves numerical approximation of
the Maxwell’s equations inside a discretized computational
volume using centered finite differences. The discretization
grids are usually rectangular in shape, but triangular [1]
two—dimensional (2-D) grids, polyhedral 3-D grids [2], and
polygonal prisms [3] have also been employed in certain
problems. The proper choice of the grid should enable
accurate geometrical modeling of arbitrarily shaped circuits
or scatterers used in microwave systems. In particular, a
rectangular mesh introduces stair-casing errors for curved
object boundaries, sometimes forcing excessive number of
cells to be employed for adequate resolution of the geometry.
Obviously, this is not an efficient solution.

A second problem in modeling geometries of arbitrary
complexity is the requirement that the discretization scheme
also model the absorbing boundary accurately. While a con-
formal mesh may be useful to accurately model the scatterer
boundary, it may not be needed at the location of the ab-
sorbing boundary. For example, some researchers have
employed generalized non-orthogonal grids that conform
to the curved object boundaries [4], [5], but, these analy-
ses have been primarily confined to perfectly conducting
scatterers or waveguiding problems. The reason for this

limitation is perhaps the difficulty in implementation of a
good ABC in such a coordinate system. However, this lim-
itation can be overcome by employing a local polygonal
mesh around the scatterer, and gradually replacing the poly-
gons with rectangular cells away from the scatterer, so that
simple ABCs, which have been exclusively developed for
rectangular meshes, can be employed. Besides improving
the accuracy in resolving local features of the scattering
object, such an implementation preserves the simplicity of
rectangular mesh modeling at the absorbing boundary. In
this paper, we report the formulation and implementation
of such an approach, and demonstrate significant improve-
mentin accuracy. The proposed method differs substantially
from existing conformal FDTD methods for modeling mi-
crowave circuits (¢f [3]), because the conformal mesh is
employed only in a small region encompassing the circuit
or the scatterer. Therefore, the proposed contribution is an-
ticipated to improve the computational efficiency and ease
of implementation of the conformal FDTD method.

The new conformal FDTD method is applied to simulate
the electromagnetic (EM) scattering from a circular dielec-
tric cylinder. For simplicity, a 2-D geometry which has
a closed-form analytical solution is chosen for testing the
algorithm. The perfectly matched layer (PML) absorbing
boundary condition for an orthogonal coordinate system [6]
is used, since it can absorb multi-directional incident waves
propagating away from the polygonal model of the scatterer.

2. Methodology

In the finite-difference time-domain algorithm, the dis-
crete approximations for the EM field can be derived from
the integral form of Maxwell’s equations. A triangular tes-
sellation consisting of a primary grid with axial electric field
located at the triangle vertices, and tangential magnetic field
located along a secondary grid passing through the centroids
of adjacent triangles, is employed (see Fig. 1). The per-
tinent cylindrical coordinate system is defined in Fig. 2,
where the unit vectors § and 7 are tangential and normal,
respectively, at an arbitrary point on a surface contour such
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Figure 1: Unit cell with E-nodes at triangle vertices and H~—
nodes at the edges of a hexagonal contour.

thatf x § = 2.

We restrict attention to a 2-D transverse magnetic (TM)
problem Wi_t}’l the electric field £ = £FE,, and the mag-
netic field H = §H, + A H,, which satisfy the Maxwell’s
equations:

0F,

Vo x nO(ﬁHn + §H.s) = UOUeEz + Ze, Ot (1)
OF, OH,

= mHs r 2

an = C + im0 o 2)
OF, 0H,

95 omH, +NTUOW 3

In the above, £,, H, and H; are total field quantities, ¢,,
Hrs Tes Om, o, and ¢ denote, respectively, relative permit-
tivity, relative permeability, electric conductivity, magnetic
conductivity, free space impedance, and speed of light in
free space.

It is evident from Fig. 1 that the edges of the secondary
grid (hexagons) are perpendicular bisectors of the corre-
sponding triangular edge. Therefore, the polygonal tessel-
lations of the secondary grid are orthogonal to the primary
triangular grid. This orthognality leads to decoupling I,
from the field equations as shown next. Applying Stokes’s
theorem to (1) around the hexagonal contour shown in Fig.

Figure 2: Cylindrical coordinate system.

1, since the magnetic field is entirely tangential to the con-
tour, we obtain

OF,
jinoHs ds = //(noaeEz + €, W) dA 4)

Since H,, is decoupled, (3) can be discarded in the compu-
tation. Then, eqs. (2) and (4) provide the update equations
for the electric and magnetic fields, respectively. In order
to discretize these equations, £, is computed at the trian-
gular nodes and H; nodes are centrally located along the
hexagonal edges (Fig. 1). Anunique orientation is assigned
to each H, which is counter—clockwise with respect to the
edges 1, 2 and 3, and clockwise with respect to the edges 4,
5 and 6.

The discretized finite difference forms of (4) and (2) are
given by, respectively,

M

n—1 Moo e A; _

D m e = 5 By + B3|
k=1
GTA]' n n—1
oo [Ezllil - Ezm] ®

_.1 n n _ Om n+i n—3%
dps 51 [Ez[’“] B E”m] - 2 [Hs[k:j] + Hs[k,j]]
Hr 1o ntl n—1

where A; is the area enclosed by the hexagonal contour
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Figure 3: Transition between triangular and rectangular grids.

centered at electric node j, [z ;1 is the length of the k-
th hexagonal edge circumscribing node j, and dp ;] is the
distance between electric nodes 7 and k (see Fig. 1). After
re-arranging these two equations, we obtain the iterative
equations to update the electric and magnetic fields on a
triangular grid:

n CZ_CI n—1

M
1 -
1= L Ll — H"7 20 9 (7
V1T G+ 0y AU +cz+cl;"° stk 131 (1)

n+% _ Dy, — Dy n——% 1
il ™ Dy + Dy otk dix,j1(D2 + Dr)

X [E?[k]—E?U]] ®)

A; A;
where C; = 2%~ 0y = =5, Dy = 22, and

Dy = Eglo,

Next, we address the modification of these update equa-
tions at the transition between triangular and rectangular
cells. In Fig. 3, we show the connection cells at the right—
bottom corner of the transition region bounded by the two
solid lines. For simplicity, we assume equilateral triangles
of the same size (each of side L1). All polygonal (hexago-
nal) cells completely inside the connection boundary have
the area A1 = +/3L12/2. All rectangular cells outside
this boundary have the area A2 = L1 x L2. All transi-
tion polygons in the bottom connection region have an area
A3 = (A1 + A2)/2, except the corner polygon, which has
area A4 = Al/4 + 7A2/8. The right—side connection cells
are divided into odd and even layers, corresponding to node
numbers marked as 1,2,3 - . on the right-side boundary.
The area of even—layer connection cells equals A5 = A2,
while that of odd-layer cells equals A6 = A1/2 + 2A42/3,
with the exception of the corner cell of area A4. Because
of symmetry, the left-side transition region is treated same

25 X

Figure 4: Modeling of a dielectric cylinder with triangular grid.
er=4,04=0,a = Aq.

as the right—side, and the top region is treated same as the
bottom. We then apply the same iterative updates as in eqs.
(7) and (8) for the connection cells in the transition region,
with the appropriate areas substituted for A;. Outside the
connection region, the fields are updated with the traditional
Yee leap-frog algorithm for rectangular cells. The stability
criterion is satisfied if we choose the time increment such

that
At < \/Z ﬁ 9
3¢

where h is the altitude of an equilateral triangle [1].

3. Numerical Validation

In order to validate the afore—mentioned methodology,
we consider the scattering by a uniform, circular, dielectric
cylinder, assumed to be infinite in z—direction (see Fig. 4).
The incident field is a sinusoidal plane wave traveling along
y—direction, of the form

E(i,2) = 1000 sin(27 fnAt). (10)

The frequency of the incident wave is 2.5 GHz, and At
equals 5 ps. The spatial increment Az = L1 = 0.3 cm, and
Ay = L2 =0.2598 cm. Illuminated by such a TM plane
wave, the scattering may be considered as 2-D, with only
FE, and H; present in triangular grids, while £,, H; and
H, are present in rectangular grids. The PML ABC is used
on the outermost rectangular grid of 16 cells thickness [6].

Since the radius of the cylinder equals half the free space
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Figure 5: Scattering computation for the dielectric cylinder: dot-

ted line denotes rectangular Yee cell implementation

[7], dashed line denotes the mixed polygonal FDTD,

and solid line denotes the eigenfunction solution (ref-

erence).

wavelength, in one wave cycle (period) requiring 80 time
steps, the wave travels from the launching point on the cylin-
der to the center and back. The computed results are detailed
in Fig. 5, which graphs the envelope of E,(25, ), when
the time step n is such that 460 < n < 500 = n,,4,. The
same geometry and time—window have been used by Taflove
and Brodwin [7] for the FDTD simulation with rectangular
cells, which requires stair—casing of the cylinder curvature.
Fig. 5 shows the improvement caused by the new polyg-
onal FDTD implementation over Taflove’s results because
of better resolution of the cylindrical boundary. Both the
polygonal solution and the traditional Yee implementation
are compared with a reference solution computed by eigen-
function summation.

4. Conclusions

We have presented a new conformal FDTD method
which utilizes triangular cells to accurately resolve the
boundaries of curved objects, and rectangular cells away
from the object. The latter facilitates the utilization of a
simple ABC such as the PML, exclusively developed for
rectangular cells. Field update equations are derived for the
triangular cells, and the technique to compute the updates
in the transition region between triangular and rectangu-
lar cells has been developed. The improvement in accu-
racy by the new conformal FDTD method in relation to a
stair-casing FDTD implementation with rectangular cells
has been demonstrated by computation of the plane wave
scattering from a circular dielectric cylinder.
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